2"-p-COUMAROYLVITEXIN 7-GLUCOSIDE FROM MOLLUGO OPPOSITIFOLIA

J. CHOPIN, * G. DELLAMONICA, * K. R. MARKHAM, † A. G. RAMACHANDRAN NAIR and R. GUNASEGARAN .

*Laboratoire de Chimie Biologique, Université de Lyon I, 69622 Villeurbanne, France; †Chemistry Division, DSIR, Petone, New Zealand, ‡Department of Chemistry, Jawaharlal Institute, Pondicherry 605006, India

(Received 22 November 1983)

Key Word Index—*Mollugo opposutfolia*; Aizoaceae; *C*-glycosylflavones; vitexin 7-*O*- β -D-glucopyranoside; EIMS; 2"-*p*-coumaroylvitexin 7-*O*- β -D-glucopyranoside; FAB-MS; ¹³C NMR.

Abstract—Besides vitexin, two compounds have been isolated from *Mollugo oppositifolia* and identified as vitexin 7-glucoside and 2"-p-coumaroylvitexin 7-glucoside. The latter is a new natural compound. Some features common to the electron-impact mass spectra of permethyl vitexin 7-glucoside and permethyl isovitexin 7-glucoside are discussed.

In continuation of our work on the anthocyaninproducing genus Mollugo [1-3], we report here the isolation and characterization of three C-glycosylflavonoids from Mollugo oppositifolia, including one new compound. From the methylethylketone-soluble fraction of the ethanolic extract of fresh aerial parts, a yellow solid was isolated and identified as vitexin by direct comparison with an authentic specimen [4]. From the nbutanol-soluble fraction of the same extract, two homogeneous compounds 1 and 2 were obtained by column chromatography on silica gel in a chloroform-methanol gradient followed by repeated paper and thin-layer chromatography. Both compounds appeared as dark spots on paper under UV light, and their UV spectra and chromatographic properties indicated an apigenin glycoside structure.

Whereas the UV spectrum of 1 showed two bands at λ_{max} 271 (II) and 327 (I) nm of nearly equal intensity, band I (321 nm) was much higher than band II (272 nm) in the UV spectrum of 2, suggesting the presence of an additional chromophore. However, the usual diagnostic reagents [5] disclosed in both compounds a 7-0substituted apigenin structure with free 5- and 4'-hydroxyl groups. Both compounds gave, on acid hydrolysis, vitexin and traces of isovitexin (identified by HPLC under conditions where vitexin and 8-C-galactosylapigenin are separated [6]), but, surprisingly, only traces of sugars could be detected (TLC) in the hydrolysis mixture. On alkaline hydrolysis, 1 was recovered unchanged (UV and TLC) whereas 2 gave 1 together with p-coumaric acid. Permethylation of 1 followed by TLC led to one main product which gave a mass spectrum showing an intense molecular ion at m/z 734 corresponding to a permethyl Ohexosylvitexin. Also consistent with this formulation was the presence of important ions at m/z 516 (corresponding to the loss of the O-hexosyl residue with hydrogen transfer to the oxygen atom) and m/z 218, 187 and 155 (characteristic of the hexosyl residue). It follows that 1 is a 7-Ohexosylvitexin. For compound 2, the MW was determined by fast atom bombardment mass spectrometry. The spectrum showed a protonated peak [MH]⁺ at 741, which was confirmed by the presence of an ion [M

+ Na]⁺ at 763. Thus only one *p*-coumaroyl group is present in 2. This group is not attached to a phenolic hydroxyl group (UV data), but to a hydroxyl group of either the 7-O-hexosyl residue or the 8-C-glucosyl residue. In order to identify the 7-linked hexose and to locate the *p*-coumaroyl group, 1 and 2 were studied by ¹³C NMR spectrometry.

The 13 C NMR resonances for the carbon atoms of the flavonoid nuclei and the *p*-coumaroyl group of 1 and 2 are consistent with the partial formulations outlined above (for data see Experimental). Sugar carbon chemical shifts are presented in Table 1 together with the chemical shifts for an 8-C- β -glucopyranosyl moiety (from vitexin [7]) and a 7-O- β -glucopyranosyl moiety (from saponarin [7]). It is clear from the level of agreement between the spectra of 1 and a combination of the two models that both the C-

Table 1. Chemical shift data for sugar carbons in the ¹³C NMR spectra of 1, 2 and models vitexin and saponarin*

1	2	C-Glucopyranosyl†	O-Glucopyranosyl‡
101 2	101.2		101.7 (C-1')
81.8	81.7	81.4 (C-5)	
786	_	78.7 (C-3)	_
77 1	77 1		77.3 (C-5')
75.8	76 2	_	76.2 (C-3')
_	74 8 (C-3)	_	
73.3		73.9 (C-1)	_
73 3	73.1		73.0 (C-2')
71.6	72.0	71 4 (C-2)	
706	70.7		70.5 (C-4')
_	70.7 (C-1)	_	<u> </u>
69 4	69.5	69 9 (C-4)	
61 2	61.0	61.5 (C-6)	_
60.6	60 5		61.1 (C-6')

^{*}Chemical shifts in ppm; solvent DMSO- d_6 ; temperature 30°.

[†]From vitexin (assignments from ref. [7])

[‡]From saponarin (assignments from ref. [7]).

Short Reports 2107

and O-linked glucopyranosyl moieties are present in 1, thus defining 1 as vitexin 7-O- β -D-glucopyranoside. In the spectrum of its mono-p-coumaroyl derivative, 2, the resonances assigned to the O-glucosyl moiety in 1 are largely unchanged. Two of the C-glucosyl signals, C-1 and C-3, however, have shifted upfield by δ 3.8 and 2.6, respectively. This behaviour is the expected result of cinnamoylation of the C-2 hydroxyl of the C-glucosyl residue [8, 9], the signal for C-2 itself shifting only slightly (δ 0.4) downfield. The structure of 2 is therefore, defined as 2"-O-p-coumaroylvitexin 7-O-glucoside, a new natural compound.

The comparison of the mass spectrum (electron impact) of permethyl 1 with that of permethyl saponarin (7-0glucosylisovitexin) [10] disclosed striking similarities in the fragmentation pattern of the C-glucosyl residue in spite of its different position in the flavone. As both spectra are superimposable between m/z 510 and 297 (flavone ion), it follows that after loss of the 7-O-hexosyl residue, the fragmentation of the C-glycosyl residue is the same for the 6-C-glucosylflavone as for the 8-Cglucosylflavone. However, characteristic differences between the two spectra permit the determination of the position of the C-glucosyl residue unambiguously. In the spectrum of permethyl saponarin, the molecular peak is followed by an ion $[M-15]^+$ of similar importance and by a more intense peak $[\vec{M} - 31]^+$ (base peak for m/zvalues higher than 250), a feature common to the mass spectra of all permethyl 6-C-glycosylflavones [11], whereas the molecular peak itself is very intense (base peak for m/z values higher than 250) in the spectrum of permethyl 1, a feature common to the mass spectra of all permethyl 8-C-glycosylflavones [11]. Moreover, the rupture of the 7-O-glycosidic bond takes place without hydrogen transfer to the oxygen atom in the case of permethyl 7-O-glycosyl-6-C-glycosylflavones [10], giving rise to an important ion at m/z 515 $[M-219]^+$ in the mass spectrum of permethyl saponarin, whereas this hydrogen transfer (always observed with permethyl flavone O-glycosides) takes place in the case of permethyl 1 and gives rise to an important ion at m/z 516 $[M-218]^+$.

Whereas isovitexin 7-glucoside is a widely distributed and well-characterized natural compound, vitexin 7-glucoside is a rare compound which until now had been characterized only by its acid hydrolysis products: glucose and vitexin. Owing to our repeated observation that glucose is easily found in the acid-hydrolysis products of isovitexin 7-glucoside whereas it is not from vitexin 7-glucoside under the same conditions, some doubt may be expressed about the exact nature of the previously reported vitexin 7-glucoside. This anomalous behaviour towards acid hydrolysis seems to be restricted to vitexin 7-glucoside since we could find glucose in the acid-hydrolysis products of 4'-O-methylvitexin 7-glucoside.

EXPERIMENTAL

Plant material. Mollugo oppositifolia L. syn. M. spergula L. Aizoaceae (voucher specimen No. 4/76 deposited at Jawaharlal Institute), a diffuse, prostrate or ascending annual with numerous branched stems up to 2 feet long and a stout tap root occurring over the greater parts of India [12], was collected from Pondicherry.

Isolation. Fresh aerial parts of M. oppositifolia (2 kg) were extracted with boiling 80% EtOH (3 × 41.). After concurrence

red. pres. and filtration, the aq. residue was extracted with C_6H_6 , EtOAc, MeCOEt and n-BuOH. Recrystallization of the MeCOEt extract in MeOH–Me₂CO yielded vitexin. The n-BuOH concentrate was chromatographed over a column of silica gel and eluted with a gradient of CHCl₃–MeOH. Fractions from 25% to 100% MeOH contained two flavone C-glycosides together with some triterpene saponin impurities. The flavonoids were further separated by PPC (15% HOAc) followed by TLC (silica gel; CHCl₃–MeOH, 3:1) and finally PC (BAW) to yield two homogeneous compounds, 1 and 2.

Vitexin 7-glucoside (1). TLC (cellulose) R_f 0.34 (15% HOAc), 0.32 (BAW). UV λ_{max}^{MeOH} nm: 271, 327; + AlCl₃ 278, 303, 345, 386, + AlCl₃ + HCl 277, 302, 342, 385, + NaOH 252, 269, 300 sh, 393 /; + NaOAc 250 sh, 270, 300 sh, 390 /; + NaOAc + H₃BO₃ 270, 335. 13 C NMR (DMSO- d_6): δ 182.3 (C-4), 164.5 (C-2), 162 6 (C-7), 161.1 (C-4'), 160.7 (C-5), 155 (C-9), 128.8 (C-2',6'), 121.2 (C-1'), 115.8 (C-3',5'), 107.3 (C-8), 102.4 (C-3), 98.5 (C-6), for sugar carbon resonances see Table 1 Permethyl ether: EIMS 70 eV, m/z (rel. int.): 734 [M]* (86), 720 (8), 703 (12), 671 (5), 559 [M-175]* (6), 516 [AH]* (26), 515 [A]* (8), 501 [AH - 15]* (26), 485 [AH - 31]* (75), 483 (33), 469 [AH - 47]* (22), 453 [AH - 63]* (60), 439 (12), 381 (13), 367 (15), 355 [AH - 161]* (11), 353 [AH - 163]* (11), 341 [AH - 175]* (27), 327 [AH - 189]* (18), 323 (12), 311 [AH - 205]* (7), 218 (26), 187 (36), 155 (19), 101 (100).

2"-p-Coumaroylvitexin 7-glucoside (2). TLC (cellulose) R_f 0.63 (15% HOAc), 0.64 (BAW). UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 272, 321; + AlCl₃ 279, 304, 332, 387; + AlCl₃ + HCl 280, 304, 330, 385; + NaOH 248, 268 sh, 299, 311, 380 %; + NaOAc 256 sh, 270, 300, 314 sh, 387, + NaOAc + H₃BO₃ 271, 321. ¹³C NMR (DMSO- d_6): 182.2 (C-4), 165.5 (C-9, p-cou), 164.5 (C-2), 161.5/161.0 (C-7,4'), 159.6 (C-4, p-cou), 155.6 (C-9), 144 (C-7, p-cou), 130.0 (C-2,6, p-cou), 129.1 (C-2',6'), 125.2 (C-1, p-cou), 121.2 (C-1'), 115.9/115.7 (C-3',5'), 115/114.6/114.2 (C-3,5,8, p-cou), 104.7/105.3 (C-8,10), 102.4 (C-3), 98.0 (C-6), for sugar carbons resonances see Table 1

Acid hydrolysis. The samples were dissolved in MeOH-4 M HCl (1:1) and heated at 100° for 1 hr in a sealed tube. After repeated evapns of the solvent, the residue was taken up in H₂O and extracted with n-BuOH. The aglycones were identified in the n-BuOH extract by TLC (silica gel) in EtOAc-pyridine-H₂O-MeOH (16:4:2:1); (cellulose) in 15% HOAc and BAW (4:1:5), the sugars in the aq. phase by TLC on Na₂HPO₄ (0.2 M) impregnated silica gel in Me₂CO-H₂O (9.1) against standard markers. The flavones and sugars were detected with bisdiazotized benzidine and aniline malonate, respectively.

Alkaline hydrolysis. 2 was dissolved in MeOH-4 M NaOH (1:1) and left under N_2 in a sealed tube for 2 hr at room temp. After acidification with 4 M HCl and evapn to dryness under red. pres., the residue was extracted with Et₂O, EtOAc and n-BuOH. Et₂O and EtOAc extracts showed the same UV spectrum (λ_{max}^{MeOH} 294 sh, 301 and 311 nm) and chromatographic behaviour as p-coumaric acid; the n-BuOH extract the same UV spectra and chromatographic behaviour as 1.

Permethylation. See ref. [11]. EIMS and FAB-MS were run at the Centre de Spectrométrie de Masse de Lyon

Acknowledgements—We are grateful to Dr. H. Wong, Chemistry Division, D.S.I.R., for running the ¹³C NMR spectra. A.G.R.N. and R.G. express their thanks to the Director, Jawahrlal Institute, for encouragement, and U.G.C., New Delhi, for financial assistance.

REFERENCES

 Chopin, J., Bouillant, M. L., Ramachandran Nair, A. G., Ramesh, P. and Mabry, T. J. (1978) Phytochemistry 17, 299.

- Chopin, J., Besson, E. and Ramachandran Nair, A. G. (1979) Phytochemistry 18, 2059.
- 3. Chopin, J., Besson, E., Dellamonica, G. and Ramachandran Nair, A. G. (1982) *Phytochemistry* 21, 2367.
- 4 Besson, E., Chopin, J., Gunasegaran, R. and Ramachandran Nair, A. G. (1980) Phytochemistry 19, 2787.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids. Springer, Berlin.
- Lardy, C., Bouillant, M. L. and Chopin, J. (1983) C. R. Journ. Int Etudes Groupe Polyphénols (Toulouse 1982), Bull. Liaison Groupe Polyphénols 11, 420
- 7. Markham, K. R., Chari, V. M. and Mabry, T. J. (1982) in The

- Flavonoids—Advances in Research (Harborne, J. B. and Mabry, T. J., eds), p. 19. Chapman & Hall, London.
- 8. Markham, K. R., Ternai, B., Stanley, R., Geiger, H. and Mabry, T. J. (1978) Tetrahedron 34, 1389.
- Theodor, R., Zinsmeister, H. D., Mues, R. and Markham, K. R. (1981) Phytochemistry 20, 1851.
- Bouillant, M. L., Besset, A., Favre-Bonvin, J. and Chopin, J. (1978) Phytochemistry 17, 527.
- 11. Bouillant, M. L., Favre-Bonvin, J. and Chopin, J. (1975) Phytochemistry 14, 2267.
- 12 (1956) Wealth of India, Raw Materials, Vol. IV, p. 136. C.S.I.R., New Delhi.

Phytochemistry, Vol 23, No 9, pp 2108-2109, 1984 Printed in Great Britain 0031-9422/84 \$3 00+0.00 © 1984 Pergamon Press Ltd.

FLAVONOID GLUCOSIDES FROM LICORICE

SHOJI YAHARA and ITSUO NISHIOKA*

Faculty of Pharmaceutical Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka 812, Japan

(Received 30 December 1983)

Key Word Index—Glycyrrhıza uralensis; Leguminosae; licorice; flavonoid glycosides; liquiritigenin 4'-O- β -apiofuranosyl(1 \rightarrow 2)- β -glucopyranoside; fiquiritigenin 7,4'-diglucoside; apigenin 6,8-di-C-glucoside.

Abstract—Two new flavanone glycosides, liquiritigenin 4'-apiosyl(1 \rightarrow 2)-glucoside and liquiritigenin 7,4'-diglucoside together with a known flavone, apigenin 6,8-di-C-glucoside, have been isolated from licorice.

Licorice, the dried root of Glycyrrhiza uralensis (Leguminosae), is prescribed in many Chinese traditional medicines as a flavouring, a diluting agent and an anti-inflammatory agent. It has been reported to contain triterpenoids (glycyrrhizin, etc.) and a variety of flavonoids [1-4] (isoflavonoids, chalcones and flavones). As part of our chemical examination of phenolic constituents in Chinese crude drugs, we have undertaken a further analysis of licorice. This has resulted in the isolation and structural characterization of two new flavanone glycosides (1 and 2), together with apigenin 6,8-di-C-glucoside (3).

Compound 1 showed UV absorptions at 274 and 312 nm, characteristic of flavanones. The ¹H NMR spectrum of 1 exhibited two anomeric proton signals at δ 5.38 (br s) and 4.95 (d, J=7 Hz). Enzymatic hydrolysis of 1 with crude hesperidinase [5] yielded liquiritigenin (7,4'-dihydroxy flavanone) (1a), glucose and apiose. The sugar sequence and the configuration in 1 were determined by the analogy of the chemical shifts (Table 1) with those of the corresponding chalcone glycoside licurazid [6], which contains a β -apiofuranosyl(1 \rightarrow 2)- β -glucopyranosyl moiety. The location of the sugar moiety in 1 was confirmed by comparison of the ¹³C NMR spectrum of 1

with that of 1a. On going from 1a to 1, the carbon resonances of C-1', C-3' and C-5' in the flavanoid B-ring were displaced downfield by 3.0, 0.9 and 0.9 ppm, respectively, while the carbon resonances arising from the A- and C-rings remained unchanged. From these observations, the structure of 1 was assigned as liquiritigenin $4'-O-\beta$ -apiofuranosyl(1 \rightarrow 2)- β -glucopyranoside.

Compound 2 showed UV absorption similar to 1 (270 and 313 nm). Enzymatic hydrolysis of 2 yielded 1a and glucose. The occurrence of two β -glucosyl moieties in 2 was deduced from the fact that its ¹H NMR spectrum showed two anomeric proton signals at δ 4.99 and 4.90 (each d, J = 7 Hz). Furthermore, these two glucose residues were shown to be attached to the A- and B-rings in the flavanoid skeleton by comparison of the ¹³C NMR resonances in 2 with those of 1a; the carbon resonances of C-6, C-8, C-4a, C-1', C-3' and C-5' in 2 were shifted downfield by 0.4, 0.9, 1.7, 2.7, 1.0 and 1.0 ppm, respectively. Accordingly, the structure of 2 was determined as liquiritigenin 7,4'-di-O- β -glucopyranoside.

EXPERIMENTAL

Mps are uncorr. 1 H NMR and 13 C NMR spectra were recorded at 100 and 25 05 MHz, respectively, and chemical shifts are given in the δ (ppm) scale with TMS as internal standard. TLC was performed on silica gel and compounds were detected by

^{*}To whom correspondence should be addressed.